Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 9: 857294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498745

RESUMO

This study investigated the impact of various concentrations of fructooligosaccharides (FOS) prebiotic on the production performance, antioxidant status, and immune response of broiler chicken. The FOS was used at 0, 0.3, 0.5, and 0.7%. The cycle included 340 broilers distributed into 4 batteries, with 85 broiler chickens in each battery. There were 5 replicates with 17 broiler chickens each, and the analyses were triplicated. The studied parameters were production performance, antioxidant status, hematological measurements, cellular and humoral immune response, intestinal acidosis, intestinal microbial counts, and volatile fatty acid (VFA) level in the hindgut. Results showed that broiler chickens fed 0.7% of FOS had significantly higher body weight gain than the control group and the groups fed 0.3% and 0.5% of FOS. Supplementing broiler feed with FOS at all levels increased the total antioxidant capacity (TAC) and reduced the malondialdehyde of the sera (P = 0.015 and 0.025, respectively). Liver catalase enzyme in the broiler chickens fed 0.5 and 0.7% of FOS was higher than that of the control group and the group fed 0.3% of FOS (P = 0.001). However, the liver MDA of the control group was higher than that of all the other groups (P = 0.031). The total WBC and heterophils % were the highest after supplementing broilers with 0.7% FOS (P = 0.004 and 0.003, respectively) at 3 wks of age. Conversely, lymphocytes and monocytes were the lowest for the 0.7% FOS group (P = 0.030 and 0.020, respectively). Dietary 0.05 and 0.7% of FOS induced the highest cellular response compared to the other treatments (P = 0.020). Thymus, bursa of Fabricious, and spleen weights were enhanced after FOS supplementation, which indicates a higher specific cellular response. To conclude, FOS prebiotic at all levels can be utilized safely to enhance the antioxidant activity and the cellular immune response of broiler chickens. Using 0.7% of FOS resulted in higher body weight of broilers. Accordingly, this amount of FOS is sufficient to reach the required results.

2.
Animals (Basel) ; 12(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35405889

RESUMO

The effect of dietary ginger powder on the production performance, digestibility, hematological parameters, antioxidant status, dietary oxidation stability, and plasma cholesterol content of broiler chickens was investigated. Ginger powder was included in the diet at 0, 5, 10, or 15 g/kg. Total antioxidant capacity and malondialdehyde in sera samples, superoxide dismutase activity, glutathione peroxidase, catalase, and malondialdehyde in liver samples, and the peroxide value and acid value of the stored diets were evaluated. The results showed that ginger inclusion significantly improved antioxidation indices in broiler sera and liver. Total body weight gain in ginger-supplemented birds was higher than that of control birds (p < 0.048). Supplementing the broiler chickens with ginger powder reduced total feed consumption (p < 0.031). White blood cell counts and the percentage of heterophils in the blood were increased in birds that received ginger supplementation (p < 0.001). The inclusion of ginger in the diet improved dry matter digestibility, crude protein utilization, crude fiber utilization, and ether extract utilization. In addition, blood cholesterol, triglyceride, and very low-density lipoprotein levels were decreased (p < 0.001), and high-density lipoprotein and levels were increased, following the inclusion of ginger in the diet (p < 0.001).

3.
Probiotics Antimicrob Proteins ; 13(3): 809-823, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33085038

RESUMO

Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the presence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate for further investigation.


Assuntos
Bovinos/microbiologia , Probióticos , Weissella , Animais , Células CACO-2 , Genótipo , Células HT29 , Humanos , Kuweit , Fenótipo , Weissella/genética , Weissella/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...